UUM 532 Spacecraft Control Systems Spring 2017-2018 Syllabus

Asst. Prof. N. Kemal Ure Aerospace Research Center Istanbul Technical University

Lecture Times and Office Hours

Time: Tuesdays 14:30-17:30 Place: Faculty of Aeronautics and Astronautics, Classroom D210 Prof. Ure Office Hours: By appointment

Course Objectives

- To provide students a solid understanding of spacecraft and missile attitude dynamics.
- To present applications of classical and modern control theory to design of guidance, navigation and control systems for spacecraft and missiles.
- To provide students with the simulation and analysis tools required to perform graduate level research in spacecraft and missile control systems.

Prerequisites

A good knowledge of basic

- Linear Algebra and Differential Equations
- System Dynamics
- Feedback Control Systems
- Scientific Programming

Lecture Topics

• Lecture 0: Introduction

Part I: Spacecraft Attitude Dynamics

- Overview of the course

• Lecture 1: Frames and Transformations

- Review of Mathematics
- Reference Frames
- Euler's Rotation Theorem
- Attitude Representations
- Lecture 2: Attitude Kinematics and Dynamics
 - Attitude Parametrization
 - Attitude Parametrization
 - Attitude Dynamics
- Lecture 3: Sensors and Actuators
 - Star Trackers
 - Sun and Earth Sensors
 - Mangetometers
 - GPS
 - Gyroscopes
 - Reaction Wheels
 - Control Moment Gyros
 - Magnetorquers
 - Thrusters

Part II: Attitude Determination and Control

• Lecture 4: Static Attitude Determination

- TRIAD Algorithm
- Wahba's Problem
- MLE Estimates
- TRMM Algorithm
- GPS Attitude Determination
- Lecture 5: Dynamic Attitude Determination

Textbooks

- Kalman Filtering For Attitude Determination
- Steady State Calibration
- Magnetometer Calibration

• Lecture 6: Attitude Control

- Regulation
- Tracking
- Detumbling and Momentum Dumping
- Dealing with Noise

Part III: Missile Guidance

- Lecture 7: Homing Guidance
 - Pursuit Guidance
 - Proportional Navigation
 - Velocity-to-be-gained
 - Closed Loop Guidance
 - Combined Navigation and Guidance

• Lecture 8: Ballistic Guidance

- 2D Hit Equation
- 3D Error Analysis
- Effect of Earth's Rotation and Geophysical Properties
- Miss Analysis

• Lecture 9: Optimal Guidance

- Maximum Principle
- Dynamic Programming
- Introduction to Differential Games
- *Main Textbook*: Markley, F. Landis, and John L. Crassidis. Fundamentals of Spacecraft Attitude Determination and Control. Vol. 33. New York: Springer, 2014.
- Schaub, Hanspeter, and John L. Junkins. Analytical mechanics of space systems. AIAA, 2003.
- Kabamba, Pierre T., and Anouck R. Girard. Fundamentals of Aerospace Navigation and Guidance. Cambridge University Press, 2014.

Grading

- Problem Sets (20%)
- Take-home Midterm (20%)
- Term Project (30%)
- Take-home Final Exam (30%)

Grading Policies

- Cheating is strictly monitored and the penalty is -100 (minus hundred) points per assignment.
- Late assignments get -30 (minus thirty) points for each day after the deadline.
- $\bullet\,$ No team work is allowed on problem sets and exams.
- Solutions types et with $\ensuremath{\operatorname{EXget}}\xspace+10$ bonus points.
- Each problem set will also contain a bonus problem, which will earn the student +10 bonus points if solved correctly.

Classroom Policies

- No attendance is required.
- Coming late to the class is tolerated.
- Bringing computers to the class is welcome.
- Unregistered listeners are welcome.
- Interacting with the instructor is strongly recommended.