UUM 526 Optimization Techniques in Engineering Spring 2017-2018

Asst. Prof. N. Kemal Ure Aerospace Research Center Istanbul Technical University

Lecture Times and Office Hours

Time: Tuesdays 08:30-11:30 Place: Faculty of Aeronautics and Astronautics, Classroom D210 Prof. Ure Office Hours: By appointment

Course Objectives

- To provide students a solid understanding of fundamentals of optimization theory.
- To present core theorems and applications regarding most common optimization problems and algorithms.
- To provide students the mathematical and computational tools required to perform research at the MSc and PhD level.

Prerequisites

A solid knowledge of graduate level

- Linear Algebra
- Multivariable Calculus
- Scientific Programming

Important Note: It is strongly recommended that you take UUM 535 Engineering Mathematics before this course.

Lecture Topics

Introductory Lectures

- Lecture 1: Introduction to Optimization
- Lecture 2: Mathematical Preliminaries

• Lecture 0: Class Logistics

Proof Techniques

- Linear Algebra
- Geometry
- Multivariable Calculus
- Lecture 3: Basics of Optimization
 - Condition for Local Minimizers

Part I: Unconstrained Optimization

- Lecture 4: One Dimensional Optimization
 - Golden Section Search
 - Fibonacci Search
 - Bisection Method
 - Newton's Method
 - Secant Method
- Lecture 5: Gradient Methods
 - The Method of Steepest Descent
 - Analysis of Gradient Methods
- Lecture 6: Netwon's Method
 - Newton's Method
 - Analysis of Newton's Method
 - Levenberg-Marquardt Modification
- Lecture 7: Conjugate Direction Methods
 - Conjugate Direction Algorithm
 - Conjugate Gradient Algorithm
- Lecture 8: Quasi-Newton Methods
 - Approximating the Inverse Hessian
 - Rank One Correction Formula
 - DPF Algorithm
 - BFGS Algorithm
- Lecture 9: Least Squares Problems
 - Least Squares Analysis
 - Recursive Least Squares Algorithm
 - Minimum Norm Problems
- Lecture 10: Neural Networks

- Single Neuron Training
- The Backpropagation Algorithm
- Lecture 11: Global Search Algorithms
 - Nelder-Mead Simplex Algorithm
 - Simulated Annealing
 - Particle Swarm Optimization
 - Genetic Algorithms

Part II: Linear Programming

- Lecture 12: Introduction To Linear Programming
 - Examples of Linear Programs
 - Standard Form
 - Basic Solution
 - Geometry of Linear Programming
- Lecture 13: Simplex Method
 - Row Operations
 - Canonical Augmented Matrix
 - Simplex Algorithm
 - Two Phase Simplex Method
- Lecture 14: Duality
 - Dual Linear Programs
 - Properties of Dual Problems
- Lecture 15: Integer Programming
 - Integer Programs
 - Unimodular Matrices
 - Cutting Plane Method

Part III: Constrained Nonlinear Programming

- Lecture 16: Problems with Equality Constraints
 - Tangent and Normal Spaces
 - Lagrange Condition
 - Second Order Conditions
- Lecture 17: Problems with Inequality Constraints
 - Karush-Kuhn-Tucker Conditions
 - Second Order Conditions
- Lecture 18: Convex Optimization Problems

- Convex Functions
- Convex Problems
- Semidefinite Programming
- Lecture 19: Algorithms for Constrained Optimization
 - Projections
 - Projected Gradient Methods
 - Lagrangian Algorithm

- Penalty Methods

- Lecture 20: Multiobjective Optimization
 - Pareto Solutions
 - Computing Pareto Front
 - From Multiobjective Optimization to Single Objective Optimization
 - Uncertain Linear Programs

Textbooks

- Main Textbook: Chong, Edwin KP, and Stanislaw H. Zak. An Introduction to Optimization. Vol. 76. John Wiley and Sons, 2013.
- Secondary Textbook: Boyd, Stephen, and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.
- Additional Textbook: Arora, J.S., 2004. Introduction to Optimum Design, Elsevier Academic Press.

Grading

- Problem Sets (30%)
- Take-Home Midterm (20%)
- Term Project (20%)
- Take-Home Final Exam (30%)

Grading Policies

- Cheating is strictly monitored and the penalty is -100 (minus hundred) points per assignment.
- Late assignments get -30 (minus thirty) points for each day after the deadline.
- No team work is allowed on problem sets and exams.
- Solutions typeset with LATEXget +10 bonus points.
- Each problem set will also contain a bonus problem, which will earn the student +10 bonus points if solved correctly.

Classroom Policies

- No attendance is required.
- Coming late to the class is tolerated.
- Bringing computers to the class is welcome.
- Unregistered listeners are welcome.
- Interacting with the the instructor is strongly recommended.
- Extra problem solving sessions (date and place TBA) will be conducted by TA Ugur Akcal.